box1

// box1.rs
//
// At compile time, Rust needs to know how much space a type takes up. This
// becomes problematic for recursive types, where a value can have as part of
// itself another value of the same type. To get around the issue, we can use a
// `Box` - a smart pointer used to store data on the heap, which also allows us
// to wrap a recursive type.
//
// The recursive type we're implementing in this exercise is the `cons list` - a
// data structure frequently found in functional programming languages. Each
// item in a cons list contains two elements: the value of the current item and
// the next item. The last item is a value called `Nil`.
//
// Step 1: use a `Box` in the enum definition to make the code compile
// Step 2: create both empty and non-empty cons lists by replacing `todo!()`
//
// Note: the tests should not be changed
//
// Execute `rustlings hint box1` or use the `hint` watch subcommand for a hint.


#[derive(PartialEq, Debug)]
pub enum List {
    Cons(i32, Box<List>),
    Nil,
}

fn main() {
    println!("This is an empty cons list: {:?}", create_empty_list());
    println!(
        "This is a non-empty cons list: {:?}",
        create_non_empty_list()
    );
}

pub fn create_empty_list() -> List {
    List::Nil
}

pub fn create_non_empty_list() -> List {
    List::Cons(0, Box::new(List::Nil))
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn test_create_empty_list() {
        assert_eq!(List::Nil, create_empty_list())
    }

    #[test]
    fn test_create_non_empty_list() {
        assert_ne!(create_empty_list(), create_non_empty_list())
    }
}

arc1

// arc1.rs
// In this exercise, we are given a Vec of u32 called "numbers" with values ranging
// from 0 to 99 -- [ 0, 1, 2, ..., 98, 99 ]
// We would like to use this set of numbers within 8 different threads simultaneously.
// Each thread is going to get the sum of every eighth value, with an offset.
// The first thread (offset 0), will sum 0, 8, 16, ...
// The second thread (offset 1), will sum 1, 9, 17, ...
// The third thread (offset 2), will sum 2, 10, 18, ...
// ...
// The eighth thread (offset 7), will sum 7, 15, 23, ...

// Because we are using threads, our values need to be thread-safe.  Therefore,
// we are using Arc.  We need to make a change in each of the two TODOs.

// Make this code compile by filling in a value for `shared_numbers` where the
// first TODO comment is, and create an initial binding for `child_numbers`
// where the second TODO comment is. Try not to create any copies of the `numbers` Vec!
// Execute `rustlings hint arc1` or use the `hint` watch subcommand for a hint.

// I AM NOT DONE

#![forbid(unused_imports)] // Do not change this, (or the next) line.
use std::sync::Arc;
use std::thread;

fn main() {
    let numbers: Vec<_> = (0..100u32).collect();
    let shared_numbers = Arc::new(numbers); // TODO
    let mut joinhandles = Vec::new();

    for offset in 0..8 {
        let child_numbers = shared_numbers.clone(); // TODO
        joinhandles.push(thread::spawn(move || {
            let sum: u32 = child_numbers.iter().filter(|n| *n % 8 == offset).sum();
            println!("Sum of offset {} is {}", offset, sum);
        }));
    }
    for handle in joinhandles.into_iter() {
        handle.join().unwrap();
    }
}

rc1

// rc1.rs
//
// In this exercise, we want to express the concept of multiple owners via the
// Rc<T> type. This is a model of our solar system - there is a Sun type and
// multiple Planets. The Planets take ownership of the sun, indicating that they
// revolve around the sun.
//
// Make this code compile by using the proper Rc primitives to express that the
// sun has multiple owners.
//
// Execute `rustlings hint rc1` or use the `hint` watch subcommand for a hint.

use std::rc::Rc;

#[derive(Debug)]
struct Sun {}

#[derive(Debug)]
enum Planet {
    Mercury(Rc<Sun>),
    Venus(Rc<Sun>),
    Earth(Rc<Sun>),
    Mars(Rc<Sun>),
    Jupiter(Rc<Sun>),
    Saturn(Rc<Sun>),
    Uranus(Rc<Sun>),
    Neptune(Rc<Sun>),
}

impl Planet {
    fn details(&self) {
        println!("Hi from {:?}!", self)
    }
}

#[test]
fn main() {
    let sun = Rc::new(Sun {});
    println!("reference count = {}", Rc::strong_count(&sun)); // 1 reference

    let mercury = Planet::Mercury(Rc::clone(&sun));
    println!("reference count = {}", Rc::strong_count(&sun)); // 2 references
    mercury.details();

    let venus = Planet::Venus(Rc::clone(&sun));
    println!("reference count = {}", Rc::strong_count(&sun)); // 3 references
    venus.details();

    let earth = Planet::Earth(Rc::clone(&sun));
    println!("reference count = {}", Rc::strong_count(&sun)); // 4 references
    earth.details();

    let mars = Planet::Mars(Rc::clone(&sun));
    println!("reference count = {}", Rc::strong_count(&sun)); // 5 references
    mars.details();

    let jupiter = Planet::Jupiter(Rc::clone(&sun));
    println!("reference count = {}", Rc::strong_count(&sun)); // 6 references
    jupiter.details();

    // TODO
    let saturn = Planet::Saturn(Rc::clone(&sun));
    println!("reference count = {}", Rc::strong_count(&sun)); // 7 references
    saturn.details();

    // TODO
    let uranus = Planet::Uranus(Rc::clone(&sun));
    println!("reference count = {}", Rc::strong_count(&sun)); // 8 references
    uranus.details();

    // TODO
    let neptune = Planet::Neptune(Rc::clone(&sun));
    println!("reference count = {}", Rc::strong_count(&sun)); // 9 references
    neptune.details();

    assert_eq!(Rc::strong_count(&sun), 9);

    drop(neptune);
    println!("reference count = {}", Rc::strong_count(&sun)); // 8 references

    drop(uranus);
    println!("reference count = {}", Rc::strong_count(&sun)); // 7 references

    drop(saturn);
    println!("reference count = {}", Rc::strong_count(&sun)); // 6 references

    drop(jupiter);
    println!("reference count = {}", Rc::strong_count(&sun)); // 5 references

    drop(mars);
    println!("reference count = {}", Rc::strong_count(&sun)); // 4 references

    // TODO
    drop(earth);
    println!("reference count = {}", Rc::strong_count(&sun)); // 3 references

    // TODO
    drop(venus);
    println!("reference count = {}", Rc::strong_count(&sun)); // 2 references

    // TODO
    drop(mercury);
    println!("reference count = {}", Rc::strong_count(&sun)); // 1 reference

    assert_eq!(Rc::strong_count(&sun), 1);
}

cow1

// cow1.rs

// This exercise explores the Cow, or Clone-On-Write type.
// Cow is a clone-on-write smart pointer.
// It can enclose and provide immutable access to borrowed data, and clone the data lazily when mutation or ownership is required.
// The type is designed to work with general borrowed data via the Borrow trait.

// I AM NOT DONE

use std::borrow::Cow;

fn abs_all<'a, 'b>(input: &'a mut Cow<'b, [i32]>) -> &'a mut Cow<'b, [i32]> {
    for i in 0..input.len() {
        let v = input[i];
        if v < 0 {
            // Clones into a vector if not already owned.
            input.to_mut()[i] = -v;
        }
    }
    input
}

fn main() {
    // No clone occurs because `input` doesn't need to be mutated.
    let slice = [0, 1, 2];
    let mut input = Cow::from(&slice[..]);
    match abs_all(&mut input) {
        Cow::Borrowed(_) => println!("I borrowed the slice!"),
        _ => panic!("expected borrowed value"),
    }

    // Clone occurs because `input` needs to be mutated.
    let slice = [-1, 0, 1];
    let mut input = Cow::from(&slice[..]);
    match abs_all(&mut input) {
        Cow::Owned(_) => println!("I modified the slice and now own it!"),
        _ => panic!("expected owned value"),
    }

    // No clone occurs because `input` is already owned.
    let slice = vec![-1, 0, 1];
    let mut input = Cow::from(slice);
    match abs_all(&mut input) {
        // TODO
        Cow::Owned(_) => println!("I own this slice!"),
        _ => panic!("expected borrowed value"),
    }
}