errors1.rs

// errors1.rs
// This function refuses to generate text to be printed on a nametag if
// you pass it an empty string. It'd be nicer if it explained what the problem
// was, instead of just sometimes returning `None`. Thankfully, Rust has a similar
// construct to `Option` that can be used to express error conditions. Let's use it!
// Execute `rustlings hint errors1` or use the `hint` watch subcommand for a hint.

pub fn generate_nametag_text(name: String) -> Result<String, String> {
    if name.is_empty() {
        // Empty names aren't allowed.
        Err(format!("`name` was empty; it must be nonempty."))
    } else {
        Ok(format!("Hi! My name is {}", name))
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn generates_nametag_text_for_a_nonempty_name() {
        assert_eq!(
            generate_nametag_text("Beyoncé".into()),
            Ok("Hi! My name is Beyoncé".into())
        );
    }

    #[test]
    fn explains_why_generating_nametag_text_fails() {
        assert_eq!(
            generate_nametag_text("".into()),
            // Don't change this line
            Err("`name` was empty; it must be nonempty.".into())
        );
    }
}

errors2.rs

// errors2.rs
// Say we're writing a game where you can buy items with tokens. All items cost
// 5 tokens, and whenever you purchase items there is a processing fee of 1
// token. A player of the game will type in how many items they want to buy,
// and the `total_cost` function will calculate the total number of tokens.
// Since the player typed in the quantity, though, we get it as a string-- and
// they might have typed anything, not just numbers!

// Right now, this function isn't handling the error case at all (and isn't
// handling the success case properly either). What we want to do is:
// if we call the `parse` function on a string that is not a number, that
// function will return a `ParseIntError`, and in that case, we want to
// immediately return that error from our function and not try to multiply
// and add.

// There are at least two ways to implement this that are both correct-- but
// one is a lot shorter!
// Execute `rustlings hint errors2` or use the `hint` watch subcommand for a hint.

use std::num::ParseIntError;

pub fn total_cost(item_quantity: &str) -> Result<i32, ParseIntError> {
    let processing_fee = 1;
    let cost_per_item = 5;
    let qty = item_quantity.parse::<i32>()?;

    Ok(qty * cost_per_item + processing_fee)
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn item_quantity_is_a_valid_number() {
        assert_eq!(total_cost("34"), Ok(171));
    }

    #[test]
    fn item_quantity_is_an_invalid_number() {
        assert_eq!(
            total_cost("beep boop").unwrap_err().to_string(),
            "invalid digit found in string"
        );
    }
}

errors3.rs

// errors3.rs
// This is a program that is trying to use a completed version of the
// `total_cost` function from the previous exercise. It's not working though!
// Why not? What should we do to fix it?
// Execute `rustlings hint errors3` or use the `hint` watch subcommand for a hint.

use std::num::ParseIntError;

fn main() -> Result<(), ParseIntError> {
    let mut tokens = 100;
    let pretend_user_input = "8";

    let cost = total_cost(pretend_user_input)?;
    if cost > tokens {
        Ok(println!("You can't afford that many!"))
    } else {
        tokens -= cost;
        Ok(println!("You now have {} tokens.", tokens))
    }
}

pub fn total_cost(item_quantity: &str) -> Result<i32, ParseIntError> {
    let processing_fee = 1;
    let cost_per_item = 5;
    let qty = item_quantity.parse::<i32>()?;

    Ok(qty * cost_per_item + processing_fee)
}

errors4.rs

// errors4.rs
// Execute `rustlings hint errors4` or use the `hint` watch subcommand for a hint.

#[derive(PartialEq, Debug)]
struct PositiveNonzeroInteger(u64);

#[derive(PartialEq, Debug)]
enum CreationError {
    Negative,
    Zero,
}

impl PositiveNonzeroInteger {
    fn new(value: i64) -> Result<PositiveNonzeroInteger, CreationError> {
        // Hmm...? Why is this only returning an Ok value?
        if value > 0 {
            Ok(PositiveNonzeroInteger(value as u64))
        } else if value == 0 {
            Err(CreationError::Zero)
        } else {
            Err(CreationError::Negative)
        }
    }
}

#[test]
fn test_creation() {
    assert!(PositiveNonzeroInteger::new(10).is_ok());
    assert_eq!(
        Err(CreationError::Negative),
        PositiveNonzeroInteger::new(-10)
    );
    assert_eq!(Err(CreationError::Zero), PositiveNonzeroInteger::new(0));
}

errors5

// errors5.rs

// This program uses an altered version of the code from errors4.

// This exercise uses some concepts that we won't get to until later in the course, like `Box` and the
// `From` trait. It's not important to understand them in detail right now, but you can read ahead if you like.
// For now, think of the `Box<dyn ...>` type as an "I want anything that does ???" type, which, given
// Rust's usual standards for runtime safety, should strike you as somewhat lenient!

// In short, this particular use case for boxes is for when you want to own a value and you care only that it is a
// type which implements a particular trait. To do so, The Box is declared as of type Box<dyn Trait> where Trait is the trait
// the compiler looks for on any value used in that context. For this exercise, that context is the potential errors
// which can be returned in a Result.

// What can we use to describe both errors? In other words, is there a trait which both errors implement?

// Execute `rustlings hint errors5` or use the `hint` watch subcommand for a hint.

use std::error;
use std::fmt;
use std::num::ParseIntError;

fn main() -> Result<(), Box<dyn error::Error>> {
    let pretend_user_input = "42";
    let x: i64 = pretend_user_input.parse()?;
    println!("output={:?}", PositiveNonzeroInteger::new(x)?);
    Ok(())
}

// Don't change anything below this line.

#[derive(PartialEq, Debug)]
struct PositiveNonzeroInteger(u64);

#[derive(PartialEq, Debug)]
enum CreationError {
    Negative,
    Zero,
}

impl PositiveNonzeroInteger {
    fn new(value: i64) -> Result<PositiveNonzeroInteger, CreationError> {
        match value {
            x if x < 0 => Err(CreationError::Negative),
            x if x == 0 => Err(CreationError::Zero),
            x => Ok(PositiveNonzeroInteger(x as u64)),
        }
    }
}

// This is required so that `CreationError` can implement `error::Error`.
impl fmt::Display for CreationError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        let description = match *self {
            CreationError::Negative => "number is negative",
            CreationError::Zero => "number is zero",
        };
        f.write_str(description)
    }
}

impl error::Error for CreationError {}

errors6.rs

// errors6.rs

// Using catch-all error types like `Box<dyn error::Error>` isn't recommended
// for library code, where callers might want to make decisions based on the
// error content, instead of printing it out or propagating it further. Here,
// we define a custom error type to make it possible for callers to decide
// what to do next when our function returns an error.

// Execute `rustlings hint errors6` or use the `hint` watch subcommand for a hint.

use std::num::ParseIntError;

// This is a custom error type that we will be using in `parse_pos_nonzero()`.
#[derive(PartialEq, Debug)]
enum ParsePosNonzeroError {
    Creation(CreationError),
    ParseInt(ParseIntError),
}

impl ParsePosNonzeroError {
    fn from_creation(err: CreationError) -> ParsePosNonzeroError {
        ParsePosNonzeroError::Creation(err)
    }

    fn from_parseint(err: ParseIntError) -> ParsePosNonzeroError {
        ParsePosNonzeroError::ParseInt(err)
    }
}

fn parse_pos_nonzero(s: &str) -> Result<PositiveNonzeroInteger, ParsePosNonzeroError> {
    let x: i64 = s.parse().map_err(ParsePosNonzeroError::from_parseint)?;
    PositiveNonzeroInteger::new(x).map_err(ParsePosNonzeroError::from_creation)
}

// Don't change anything below this line.

#[derive(PartialEq, Debug)]
struct PositiveNonzeroInteger(u64);

#[derive(PartialEq, Debug)]
enum CreationError {
    Negative,
    Zero,
}

impl PositiveNonzeroInteger {
    fn new(value: i64) -> Result<PositiveNonzeroInteger, CreationError> {
        match value {
            x if x < 0 => Err(CreationError::Negative),
            x if x == 0 => Err(CreationError::Zero),
            x => Ok(PositiveNonzeroInteger(x as u64)),
        }
    }
}

#[cfg(test)]
mod test {
    use super::*;

    #[test]
    fn test_parse_error() {
        // We can't construct a ParseIntError, so we have to pattern match.
        assert!(matches!(
            parse_pos_nonzero("not a number"),
            Err(ParsePosNonzeroError::ParseInt(_))
        ));
    }

    #[test]
    fn test_negative() {
        assert_eq!(
            parse_pos_nonzero("-555"),
            Err(ParsePosNonzeroError::Creation(CreationError::Negative))
        );
    }

    #[test]
    fn test_zero() {
        assert_eq!(
            parse_pos_nonzero("0"),
            Err(ParsePosNonzeroError::Creation(CreationError::Zero))
        );
    }

    #[test]
    fn test_positive() {
        let x = PositiveNonzeroInteger::new(42);
        assert!(x.is_ok());
        assert_eq!(parse_pos_nonzero("42"), Ok(x.unwrap()));
    }
}